Reinforcement Leaning Using a Gauss-Sigmoid Neural Network
نویسندگان
چکیده
yan et al. has pointed out that the combination of orcement learning and Sigmoid-based neural ork sometimes leads to instability of the learning. is paper, it is proposed that a Gauss-Sigmoid neural ork, in which continuous input signals are put into a oid-based neural network through a RBF network, ilized for reinforcement learning. It is confirmed simulation of the same task as in Boyan et al.[1] the learning is faster and more stable when the s-Sigmoid neural network is used, than when the oid-based neural network is used.
منابع مشابه
Sigmoid-Weighted Linear Units for Neural Network Function Approximation in Reinforcement Learning
In recent years, neural networks have enjoyed a renaissance as function approximators in reinforcement learning. Two decades after Tesauro's TD-Gammon achieved near top-level human performance in backgammon, the deep reinforcement learning algorithm DQN achieved human-level performance in many Atari 2600 games. The purpose of this study is twofold. First, we propose two activation functions for...
متن کاملEvaluation of Ultimate Torsional Strength of Reinforcement Concrete Beams Using Finite Element Analysis and Artificial Neural Network
Due to lack of theory of elasticity, estimation of ultimate torsional strength of reinforcement concrete beams is a difficult task. Therefore, the finite element methods could be applied for determination of strength of concrete beams. Furthermore, for complicated, highly nonlinear and ambiguous status, artificial neural networks are appropriate tools for prediction of behavior of such states. ...
متن کاملGauss-sigmoid neural network
Recently RBF(Radial Basis Function)-based networks have been widely used because they can learn a strong non-linear function faster and more easily by their local learning characteristics. However, it has no hidden units that can represent some global information. Accordingly even if the knowledge obtained through the previous sets of learning is utilized effectively in the present learning, th...
متن کاملReinforcement Learning of Intelligent Characters in Fighting Action Games
Abstract. In this paper, we investigate reinforcement learning (RL) of intelligent characters, based on neural network technology, for fighting action games. RL can be either on-policy or off-policy. We apply both schemes to tabula rasa learning and adaptation. The experimental results show that (1) in tabula rasa leaning, off-policy RL outperforms on-policy RL, but (2) in adaptation, on-policy...
متن کاملPredicting the Coefficients of Antoine Equation Using the Artificial Neural Network (TECHNICAL NOTE)
Neural network is one of the new soft computing methods commonly used for prediction of the thermodynamic properties of pure fluids and mixtures. In this study, we have used this soft computing method to predict the coefficients of the Antoine vapor pressure equation. Three transfer functions of tan-sigmoid (tansig), log-sigmoid (logsig), and linear were used to evaluate the performance of diff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002